If P(x) be a polynomial of degree 4, with P(2)=-1, P'(2)=0, P”(2)=2, P”'(2)=-12 and Pir(2) =24, then P”(1) is equal to
26
Let P(x)=ax4+bx3+cx2+dx+e
P(2)=16a +8b+4c+2d+e=-1 ...(i)
P'(x)=4ax3+3bx2+2cx+d
P'(2)=32a+12b+4c+d=0 ...(ii)
P''(x)=12ax2+6bx+2c
P''(2)=48a+12b+2c=2 ...(iii)
∴ P'''(x)=24ax+6b
∴ P'''(2)=48a+6b=-12 ...(iv)
And piv (x) = 24 ⟹ piv (2) =24 a⟹24=24a
∴ a=1,
From Eq. (iv), b=-10
From Eq. (iv), c=37
∴ p' ' (x) =12x2 - 60x+74
∴ p' ' (1) =12x - 60+74
=- 48+74
=26