PQ = QR(Given)
And distance between the points is given by
√(x1−x2)2+(y1−y2)2
So,
√(5−0)2+(−3−1)2=√(0−x)2+(1−6)2
√(5)2+(−4)2=√(−x)2+(−5)2
√25+16=√x2+25
41=x2+25
16=x2
x=±4
Therefore, point R is (4, 6) or ( - 4, 6).
When point R is (4, 6),
PR=√(5−4)2+(−3−6)2=√12+(−9)2
=√1+81=√82
QR=√(0−4)2+(1−6)2=√(−4)2+(−5)2
=√16+25=√41
When point R is (-4,6),
PR=√(5−(−4))2+(−3−6)2=√(9)2+(−9)2
=√81+81=9√2
QR=√(0−(−4))2+(1−6)2=√(4)2+(−5)2
=√16+25=√41