Q(0,1) is equidistant from P(5,−3) and R(x,6).
So PQ=QR
By distance formula, √[(5−0)2+(−3−1))2]=√[(x−0)2+(6−1)2
√[(5)2+(−42]=√[(x2+(5)2]
√[(25+16)]=√[x2+25]
√(41)=√[x2+25]
Squaring both sides,
41=x2+25
x2+25−41=0
x2−16=0
(x−4)(x+4)=0
(x−4)=0 or (x+4)=0
x=4 or x=−4
Hence the value of x is 4 or −4.