r1=Ss−a=1,r2=Ss−b=2,r3=Ss−c=?
s−a=k.1,s−b=k.12,s−c=k.1r3
Adding pairwise and putting 2s=a+b+c
c=k(1+12),a=k(12+1r3),b=k(1+1r3)
Since triangle is right angled, c2=a2+b2
∴k2.(32)2=k2(r3+2)24(r3)2+k2(r3+1)2(r3)2
∴9r23=(r3+2)2+4(r3+1)2
4r23−12r3−8=0
∴r3=3±√172=3+√172 as r3 is +ive