The correct option is C {−2,−1,0,1,2}
Given: R={(x,y):x,y∈Z,x2+y2≤4}
When x=0, then
x2+y2≤4
⇒y2≤4
⇒y∈[−2,2]
⇒y=−2,−1,0,1,2 [∵y∈Z]
When x=±1, then
x2+y2≤4
⇒y2≤3
⇒y∈[√−3,√3]
⇒y=−1,0,1 [∵y∈Z]
When x=±2, then
x2+y2≤4
⇒y2≤0
⇒y=0 [∵y∈Z]
When x=±3, then
x2+y2≤4
⇒y2≤−5
Which is not possible.
So, the domain of R is all possible values of x
Hence, domain ={−2,1,0,1,2}
Therefore, the correct option is (c)