If roots of the equation (a−b)x2+(b−c)x+(c−a)=0 are equal, prove that 2a=b+c.
Given quadratic equation is (a−b)x2+(b−c)x+(c−a)=0
Since the root are equal, discriminant of the quadratic equation =0
Comparing above equation with the standard form Ax2+Bx+C=0
We get, A=(a−b),B=(b−c),C=(c−a)
Hence, discriminant
D=B2−4AC=0⇒B2=4AC⇒(b−c)2=4(a−b)(c−a)
⇒b2+c2−2bc=4(ac−a2−bc+ab)⇒b2+c2−2bc=4ac−4a2−4bc+4ab⇒b2+c2+4a2+2bc−4ac−4ab=0⇒b2+c2+(−2a)2+2(b)(c)+2(−2a)c+2(−2a)b=0⇒(b+c−2a)2=0⇒b+c−2a=0∴2a=b+c