Let
S=0 i.e.
x2+y2+2gx+2gx+2fy+c=0 be the equation of circle
P(x1y1) be the external point and PT & PS are 2 tangents to give circle.
Since, ΔPTC is a right angled triangle.
⇒PT2+TC2=PC2 __(A)
But TC = radius of circle =√g2+f2−c
⇒TC2=g2+f2−c __(I)
Also, PC2=[x1−(g)]2+[y1−(−f)]2
PC2=(x1+g)2+(y1+f)2 __(II)
Using (I) & (II) in equation A, we get
PT2+g2+f2−C=(x1+g)2+(y1+f)2
⇒PT2+g2+f2−c=x21+g2+2gx1+g2+y21+2fy1+f2
⇒PT2=x21+y21+2gx1+2fy1+c
⇒|PT|=√x21+y21=2gx1+2fy1+c=√s11 Hence proved