The correct option is C 102C50
Given : S=(1+x2)100+2x2(1+x2)99+3x4(1+x2)98+⋯+101x200
Let a=(1+x2),b=x2, then
S=a100+2ba99+3b2a98+⋯+101b100bSa= ba99+2b2a98+⋯+100b100+101b101a
Subtracting above two equations,
(1−ba)S=a100+ba99+b2a98+⋯+b100−101b101a−1⇒S=a101+ba100+b2a99+⋯+b100a−101b101 (∵a−b=1)⇒S=a101((ba)101−1)ba−1−101b101⇒S=a102−(a+101)b101
Putting a and b, we get
S=(1+x2)102−(102+x2)x202
Coefficient of x100 in (1+x2)102−(102+x2)x202
= Coefficient of x100 in (1+x2)102
=102C50