wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If S and Sā€² be the foci of the ellipse (x2/a2)+(y2/b2)=1 and e be its eccentricity, then tanPSSā€²4tanPSā€²S4=1āˆ’e1+e where P is any point on the ellipse.

A
True
No worries! Weā€˜ve got your back. Try BYJUā€˜S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B False
We know that,
PScosα+PScosβ=2ae (1)

Similarly, by sine rule we can write,
PSsinβ=PSsinα

PS=PS×sinαsinβ (2)

Putting this value in equation (1), we get,
PScosα+PSsinαsinβ×cosβ=2ae

PS(cosα+sinαsinβ×cosβ)=2ae

PS(sinβcosα+sinαcosβsinβ)=2ae

PS(sinβcosα+sinαcosβ)=2aesinβ

PS×sin(α+β)=2aesinβ

PS=2aesinβsin(α+β)

Put this value in equation (2), we get,
PS=2aesinβsin(α+β)×sinαsinβ

PS=2aesinαsin(α+β)

PS+PS=2a

2aesinβsin(α+β)+2aesinαsin(α+β)=2a

2aesin(α+β)(sinα+sinβ)=2a

esin(α+β)(sinα+sinβ)=1

e(sinα+sinβ)=sin(α+β)

e(2sin(α+β2)cos(αβ2))=2sin(α+β2)cos(α+β2)

ecos(αβ2)=cos(α+β2)

e=cos(α+β2)cos(αβ2)

1e=cos(αβ2)cos(α+β2)

1e1+e=cos(αβ2)cos(α+β2)cos(αβ2)+cos(α+β2)

1e1+e=2sin(α2)sin(β2)2cos(α2)cos(β2)

1e1+e=tan(α2)tan(β2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon