We know that,
PScosα+PS′cosβ=2ae (1)
Similarly, by sine rule we can write,
PSsinβ=PS′sinα
∴PS′=PS×sinαsinβ (2)
Putting this value in equation (1), we get,
PScosα+PSsinαsinβ×cosβ=2ae
∴PS(cosα+sinαsinβ×cosβ)=2ae
∴PS(sinβcosα+sinαcosβsinβ)=2ae
∴PS(sinβcosα+sinαcosβ)=2aesinβ
∴PS×sin(α+β)=2aesinβ
∴PS=2aesinβsin(α+β)
Put this value in equation (2), we get,
PS′=2aesinβsin(α+β)×sinαsinβ
∴PS′=2aesinαsin(α+β)
PS+PS′=2a
∴2aesinβsin(α+β)+2aesinαsin(α+β)=2a
∴2aesin(α+β)(sinα+sinβ)=2a
∴esin(α+β)(sinα+sinβ)=1
∴e(sinα+sinβ)=sin(α+β)
∴e(2sin(α+β2)cos(α−β2))=2sin(α+β2)cos(α+β2)
∴ecos(α−β2)=cos(α+β2)
∴e=cos(α+β2)cos(α−β2)
∴1e=cos(α−β2)cos(α+β2)
∴1−e1+e=cos(α−β2)−cos(α+β2)cos(α−β2)+cos(α+β2)
∴1−e1+e=2sin(α2)sin(β2)2cos(α2)cos(β2)
∴1−e1+e=tan(α2)tan(β2)