If Sn=132+1+142+2+152+3+⋯⋯upto n terms and S∞=a72, then a equals
Open in App
Solution
Tr=1r+(r+2)2=1(r+4)(r+1) =13[1r+1−1r+4] Sn=n∑r=1Tr=13(12−15) +13(13−16) +13(14−17) +13(15−18)+13(16−19)+13(⋮⋮)+13[1n+1−1n+4]Sn=13[12+13+14−1n+2−1n+3−1n+4]
For very large value of n, 1n+2,1n+3,1n+4≅0 S∞=13[12+13+14]=1336∴a=26