Given, secA=54=Hypotenuseadjacent Side
From Pythagoras theorem,
(Hypotenuse)2=(opposite Side)2+(adjacent Side)2
52=(opposite Side)2+42
(opposite Side)2=52−42=25−16
(opposite Side)2=9=32
(opposite Side)=3
sinA=35,cosA=45,tanA=34
To Prove, 3sinA−4sin3A4cos3A−3cosA=3tanA−tan3A1−3tan2A
3(35)−4(35)34(45)3−3(45) = 3(34)−(34)31−3(34)2
(95)−(108125)(256125)−(125) = (94)−(2764)1−(2716)
(225−108125)(256−300125) = (144−2764)(16−2716)
(117125)(−44125)=(11764)(−1116)
(117125)(−44125)=(11764)(−1116)
117−44=11711(−4)
117−44=117−44
∴3sinA−4sin3A4cos3A−3cosA=3tanA−tan3A1−3tan2A
Hence Verified