If secA=54, verify that 3sinA−4sin3A4cos3A−3cos A=3tanA−tan3A1−3tan2A
We have,sec A=54
⇒ cosA=45 [BaseHypotenuse]
By pythagoras theorem,
(Perpendicular)2=(Hypotenuse)2−(Base)2
⇒Perpendicular = √25−16
⇒Perpendicular = 3
Then, sin A = PerpendicularHypotenuse=35
tan A = PerpendicularBase=34
Now, we will prove that
3sinA−4sin3A4cos3A−3cosA=3tanA−tan3A1−3tan2A
LHS = 3sinA−4sin3A4cos3A−3cosA
=3×35−4(35)34(45)3−3×45
95−108125256125−125
=225−108125256−300125
=117125×125−44
=117−44
RHS = 3tanA−tan3A1−3tan2A
=3×34−(34)31−3(34)2
=94−27641−2716
=11764−1116
=−11744
∴ LHS=RHS