If Sin−1(6x)+Sin−1(6√3x)=−π2 then the value of x is
Consider the given equation.
sin−1(6x)+sin−1(6√3x)=−π2 ……. (1)
π2+sin−1(6√3x)=−sin−1(6x)
On taking sin both sides, we get
sin(π2+sin−1(6√3x))=sin(−sin−1(6x))
We know that
sin(π2+θ)=cosθ
sin(−θ)=−sinθ
Therefore,
cos(sin−1(6√3x))=−sin(sin−1(6x))
We know that
sin−1x=cos−1√(1−x2)
Therefore,
cos(sin−1(6√3x))=−sin(sin−1(6x))
cos(cos−1(√1−(6√3x)2))=−sin(sin−1(6x))
√1−(6√3x)2=−6x
On squaring both sides, we get
1−(6√3x)2=(−6x)2
1−108x2=36x2
144x2=1
x2=1144
x=±112
But x=112 does not satisfy equation (1),
Hence, the value of x is −112.