If sin-1(A+iB)=x+iy, then AB=
tanxtanhy
tanhxtany
tanhxtanhy
cosxcoshy
Explanation for the correct option.
Compute the required value:
Given that, sin-1(A+iB)=x+iy.
Taking sin both sides we have:
(A+iB)=sin(x+iy)(A+iB)=sinxcoshy+icosxsinhy
Comparing real & imaginary parts we have:
A=sinxcoshyB=cosxsinhy
Therefore the value is:
AB=[sinxcoshy][cosxsinhy]=tanxtanhy
Hence, option A is correct.
If (x+iy)13=a+ib, then xa+yb =
If √a+ib== x + iy, then possible value of √a−ib is
If x+iy=(a+ib)/(a-ib), then prove x^2 + y^2 = 1. The book explanation is not clear.
How is x-iy=(a-ib)/(a+ib) found out?