If sin−1√x2+2x+1+sec−1√x2+2x+1=π2,x≠0 then the value of 2sec−1x2+sin−1x2=
sec−1t=cos−11t and sin−1z+cos−1z=π2
∵sin−1√x2+2x+1+cos−11√x2+2x+1=π2
Above implies that √x2+2x+1=1√x2+2x+1
or x2+2x+1=1 or x(x+2)=0
∴x=0,−2∴x=−2asx≠0
2sec−1x2+sin−1x2
=2sec−1(−1)+sin−1(−1)
=2cos−1(−1)+sin−1(−1)
=cos−1(−1)+cos−1(−1)+sin−1(−1)
=π+π2=3π2