The correct option is C minimum value of 3x−y+4z is −8
Given : (sin−1x)2+(sin−1y)2+(sin−1z)2=3π24
Since sin−1x∈[−π2,π2]
So, the given equation is true when
⇒sin−1x=±π2,sin−1y=±π2,sin−1z=±π2
⇒x=±1,y=±1,z=±1
∴ Maximum value of 3x−y+4z=8 and
Minimum value of 3x−y+4z=−8