If |sin−1x|+|cos−1x|=π2, then x∈
We have,
∣∣sin−1x∣∣+∣∣cos−1x∣∣=π2
Let x=0
So,
∣∣sin−10∣∣+∣∣cos−10∣∣=π2
⇒0+π2=π2
⇒π2=π2
If put x=1
∣∣sin−11∣∣+∣∣cos−11∣∣=π2
⇒π2+0=π2
x∈[0,1]
If sin−1x=π5 for some x ϵ(−1,1), then the value of cos−1x is [IIT 1992]
if sin−1x+sin−1y=2π3 and cos−1x−cos−1y=π6, then x=