If sin-1x+cot-112=π2 then x is:
0
15
25
32
Explanation for the correct option:
Simplification of expression:
Given that, sin-1x+cot-112=π2
∴sin−1(x)=π2−cot−112=tan−112[∵tan-1x+cot-1x=π2]
∴sin−1x=sin−1121+14=sin−1124+14=sin−11254=sin−11252=sin−112×25=sin−115[∵sin−1x=sin−1θ⇒x=θ]
∴x=15
Hence, option B is correct.