The correct option is A sin2xsin2y
Given, sin2x+cos2y=1
On differentiating both sides with respect to x, we get
ddx(sin2x+cos2y)=ddx(1)
⇒2sinxcosx+2cosy(−sinydydx)=0
[usingchainrule,ddxf{g(x)}=f′(x)ddxg(x)]
⇒−2sinycosydydx=−2sinxcosx
⇒dydx=−sin2x−sin2y=sin2xsin2y (∵sin2x=2sinxcosx)