If sin[2cos−1cot(2tan−1x)]=0, then the value of x=
±(1±√2)
Given sin[2cos−1cot(2tan−1x)]
⇒sin{2cos−1[cot(tan−12x1−x2)]}=0⇒sin{2cos−1[cot(cot−11−x22x)]}=0sin{2cos−1(1−x22x)}=0 [∵2cos−1z=cos−1(2z2−1)]⇒2cos−1(1−x22x)=cos−1[2(1−x22x)2−1]=cos−1[x4−4x2+12x2]LHS=sin[cos−1(x4−4x2+12x2)] .........(1)∴Again sin(cos−1t)=sin(sin−1√1−t2)=0⇒1−t2=0Hence from (1) (x4−4x2+1)2−(2x2)2=0⇒[(x4−4x2+1−2x2)] [(x4−4x2+1+2x2)]=0⇒x4−4x2+1+2x2=0 x4−4x2+1−2x2=0⇒(x2−1)2=0 (x2−3)2=8⇒x=±1 x=±(1±√2)