If sin2x=4cosx, then x is equal to
nπ2±π4;n∈Z
no value
nπ+-1nπ2;n∈Z
2nπ+π2;n∈Z
Explanation for the correct option.
Given that,sin2x=4cosx2sinxcosx-4cosx=02cosx(sinx-2)=02cosx=0,sinx-2=0cosx=0,sinx=2Since -1≤sinθ≤1
So, sinθ=2 not possible.Therefore, cosx=0⇒x=2nπ±π2,n∈Z
Hence, option C is correct.