If sinA+cosA=2, then the value of cos2A is
2
12
4
-1
Explanation for the correct option.
Step 1: Find the value of A
Given that, sinA+cosA=2
Divide both sides by 2 we have:(sinA+cosA)2=2212sinA+12cosA=1
We know that, sinπ4=cosπ4=12andsina+b=sinacosb+cosasinb
So we havecosπ4sinA+sinπ4cosA=1⇒sinA+π4=sinπ2⇒A+π4=π2⇒A=π4
Step 2: Find the value of cos2A
Now substitute A=π4 in cos2A.⇒cos2A=cos2π4=122=12Hence, option B is correct.