If sin A=n sin B, then n−1n+1tanA+B2=
We have sin A=n sin B⇒n1=sin Asin B ⇒n−1n+1=sin A−sin Bsin A+sin B=2 cosA+B2sinA−B22 sinA+B2cosA−B2 =tanA−B2cotA+B2 ⇒n−1n+1 tan(A+B2)=tanA−B2.
If sin A = n sin B, then n−1n+1 tan A+B2 =