If sinA+sin2A=x and cosA+cos2A=y, then x2+y2x2+y2-3=
2y
y
3y
None of these
Explanation for the correct option.
Step 1: Find the value of x2+y2
Given that, sinA+sin2A=x and cosA+cos2A=y.
∴x2+y2=sinA+sin2A2+cosA+cos2A2=sin2A+sin22A+2sin2AsinA+cos2A+cos22A+2cosAcos2A∵a+b2=a2+2ab+b2=sin2A+cos2A+sin22A+cos22A+2sinAsin2A+cosAcos2A=1+1+2cos2A-A=2(1+cosA).....(1)
Step 2: Find the value of x2+y2-3
By (1) we have:
∴x2+y2x2+y2-3=21+cosA21+cosA-3=21+cosA2+2cosA-3=2+2cosA2cosA-1=4cosA-2+4cos2A-2cosA=2cosA+4cos2A-2=22cos2A-1+2cosA=2cos2A+2cosA∵cos2A=2cos2A-1=2(cosA+cos2A)=2y{from the given}
Therefore, x2+y2x2+y2-3=2y
Hence, option A is correct.