If (sin A)/(sin B) = √3/2 , (cos A)/(cos B) = √5/2, then find the values of tan A and tan B.
Open in App
Solution
sinA/sinB = root 3/2. =》sin^2 A/sin^2 B = 3/4. =》sin^2 A = 3sin^2 B/4 ...(1) Again, cosA/cosB = root5/2 =》cos^2 A = 5cos^2 B/4 ...(2) Adding (1) and (2), cos^2 A + sin^2 A = 1 = 5cos^2 B/4 + 3sin^2 B/4 = (5cos^2 B + 3sin^2 B)/4. =》4 = 5cos^2 B + 3sin^2 B = 5(1-sin^2 B) + 3sin^2 B = 5 - 2sin^2 B. =》sin B = 1/root 2 = sin 45.so, tan B = tan 45 = 1 ...(3) Also, cos B = cos 45 = 1/root 2. Again, cosA/cosB = cosA/(1/root2) = root 5/2. =》cosA = root5/root 8, (Now, by using square- identity), we get: tan A = root 3/ root 5 ....(4). Adding (3) and (4), tan A + tan B = 1 + root 3/root 5 = (root 5 + root 3)/root 5