If sin-1(x)=θ+β and sin-1(y)=θ-β, then 1+xy=
sin2θ+sin2β
sin2θ+cos2β
cos2θ+cos2β
cos2θ+sin2β
Explanation for the correct option.
Given that, sin-1(x)=θ+β and sin-1(y)=θ-β.
⇒x=sin(θ+β)andy=sin(θ-β)1+xy=1+sin(θ+β)sin(θ-β)1+xy=1+sin2θ-sin2βUsing the identity, sin2A+cos2A=1.1+xy=sin2θ+cos2β
Hence, option B is correct.
If cos3θ = αcosθ+βcos3θ, then (α,β) =
If cos 3theta = αcosθ+βcos3θ, then (α,β) =