We have,
sin A = PerpendicularHypotenuse=a2−b2a2+b2
So, we draw a right triangle right angled at B such that
Perpendicular = a2−b2 and, Hypotenuse = a2+b2. and ∠BAC=θ
By Pythagoras theorem, we have
AC2=AB2+BC2
⇒AB2=(a2+b2)2−(a2−b2)2
⇒AB2=(a4+b4+2a2b2)−(a4+b4−2a2b2)
⇒AB2=4a2b2=(2ab)2
⇒AB=2ab
When we consider the trigonometric ratios of ∠BAC=θ , we have
Base = AB = 2ab, Perpendicular = BC = a2−b2, and Hypotenuse = AC = a2+b2
∴cosθ=BaseHypotenuse=2aba2+b2
⇒tanθ=PerpendicularBase=a2−b22ab
⇒cosecθ=HypotenusePerpendicular=a2+b2a2−b2
⇒secθ=HypotenuseBase=a2+b22ab
and,
cotθ=BasePerpendicular=2aba2−b2