wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin θ=a2b2a2+b2, then Find other Ratios

Open in App
Solution

We have,

sin A = PerpendicularHypotenuse=a2b2a2+b2

So, we draw a right triangle right angled at B such that
Perpendicular = a2b2 and, Hypotenuse = a2+b2. and BAC=θ
By Pythagoras theorem, we have

AC2=AB2+BC2

AB2=(a2+b2)2(a2b2)2
AB2=(a4+b4+2a2b2)(a4+b42a2b2)
AB2=4a2b2=(2ab)2
AB=2ab

When we consider the trigonometric ratios of BAC=θ , we have

Base = AB = 2ab, Perpendicular = BC = a2b2, and Hypotenuse = AC = a2+b2

cosθ=BaseHypotenuse=2aba2+b2

tanθ=PerpendicularBase=a2b22ab

cosecθ=HypotenusePerpendicular=a2+b2a2b2

secθ=HypotenuseBase=a2+b22ab

and,

cotθ=BasePerpendicular=2aba2b2

1038110_1008412_ans_407471953a594169baff20d10015cec2.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon