If sinθ=a2−b2a2+b2, find the values of tan θ,secθ and cosecθ.
Now, cos θ=√1−sin2θ
=√1−(a2−b2)2(a2+b2)2[∵sinθ=a2−b2a2+b2]
=√(a2+b2)2−(a2−b2)2(a2+b2)2
=√(a2+b2+a2−b2)(a2+b2−a2+b2)a2+b2
[Using x2−y2=(x−y)(x+y)]
=√2a2×2b2a2+b2
=2aba2+b2....(ii)
Now tanθ=sinθcosθ
=a2−b2a2+b22aba2+b2
=a2−b22ab
secθ=1cosθ=a2+b22ab[from(ii)]
and cosecθ=1sinθ=a2+b2a2−b2 [from (i)]