If sinx+cosx+tanx+cotx+secx+cosecx=7 and sin2x=a−b√7, then-
(sinx+cosx)+(1sinxcosx)+(sinx+cosxsinxcosx)=7
⇒(sinx+cosx)(1+1sinxcosx)=7−2sin2x
Squaring both sides ⇒sin22x−44sin22x+36sin2x=0
⇒sin22x−44sin2x+36=0(sin2x≠0)
⇒sin2x=22−8√7.
Option C and D