If sinx+siny=a and cosx+cosy=b show that cos(x−y)=(a2+b2−2)/2
Squaring and adding the given relation (sin2x+sin2y+2sinxsiny)+(cos2x+cos2y+2cosxcosy)=a2+b2 or 2(cosxcosy+sinxsiny)=a2+b2−2 or cos(x−y) = (a2+b2−2)/2
If sinx+siny=a and cosx+cosy=b show that tan(x−y2)=±√(4−a2−b2a2+b2)