If sinx+siny=a and cosx+cosy=b show that tan(x−y2)=±√(4−a2−b2a2+b2)
∵tan2(A2)=1−casA1+cosA∴tan2(x−y2)=1−(a2+b2−2)/21+(a2+b2−2)/2
or tan (x−y2)=±√(4−a2−b2a2+b2)
If sinx+siny=a and cosx+cosy=b show that cos(x−y)=(a2+b2−2)/2