The correct option is
A a4−b4+4b2a2b2+b4We have,
sinx+siny=a ............. (i)
cosx+cosy=b ............ (ii)
On squaring eqn. (i) and (ii) and adding them, we get
1+1+2(sinxsiny+cosxcosy)=a2+b2
or, 2+2cos(x−y)=a2+b2
or, cos(x−y)=a2+b2−22 ............ (iii)
On dividing eqn.(i) by (ii), we get
sinx+sinycosx+cosy=ab
or, tan(x+y)2=ab ........... (iv)
∴tan2(x+y)2+tan2(x−y)2
=a2b2+1−cos(x−y)1+cos(x−y)
=a2b2+1−a2+b2−221+a2+b2−22
=a2b2+4−a2−b2a2+b2
=a4+a2b2+4b2−a2b2−b4a2b2+b4
=a4−b4+4b2a2b2+b4
Hence, B is the correct option.