If sinA=sinB and cosA=cosB, then
A.sinA−B2=0
B.sinA+B2=0
C.cosA−B2=0
The correct option is A .sinA−B2=0
We have sinA=sinB and cosA=cosB
Using sin2θ=2sinθcosθ, we get,
⇒2sinA2cosA2=2sinB2cosB2
⇒sinA2cosA2=sinB2cosB2..(i)
Using cos2θ=2cos2θ−1, we get,
⇒2cos2A2−1=2cos2B2−1
⇒cosA2=cosB2...(ii)
From (i) and (ii)
⇒sinA2=sinB2 ...(iii)
Consider, sin(A−B2)
=sinA2cosB2−cosA2sinB2
=0 [From (ii) and (iii)]
Hence, sin(A−B2)=0