If sinA=sinB and cosA=cosB, then
sin A−B2 = 0
sin A+B2 = 0
cosA−B2 = 0
cos (A + B) = 0
We have sin A = sin B and cos A = cos B
2cos(A+B2)sin(A−B2)=0,−2sin(A+B2)sin(A−B2)=0
Hence, sin(A−B2) = 0.
A.sinA−B2=0
B.sinA+B2=0
C.cosA−B2=0
sinA−sinBcosA+cosB+cosA−cosBsinA+sinB=
Simplify the expression: sinA−sinBcosA+cosB+cosA−cosBsinA+sinB