If Sn=113+1+213+23+1+2+313+23+33+…..+1+2+……+n13+23+……+n3;n=1,2,3.. Then Sn is not greater than:
12
1
2
4
Explanation for the correct option.
Step 1: Find the rth term
Given, Sn=113+1+213+23+1+2+313+23+33+…..+1+2+……+n13+23+……+n3;n=1,2,3..
Sn=∑kk=1r∑k3k=1r=r(r+1)2r(r+1)22=2r(r+1)=2r-2(r+1)
Step 2: Find the sum
Sn=∑2r-2r+1r=1n=21-21+22-23+23-,,,2n-2n+1=2-2n+1<2
Hence, option C is correct.
If (5+9+13+….n)(7+9+11+..12)=512 , then n equals