If Sn=13+23+…..+n3 and Tn=1+2+…..+n, then
Sn=Tn
Sn=Tn4
Sn=Tn2
Sn=Tn3
Explanation for the correct option
Given, Sn=13+23+…..+n3 and Tn=1+2+…..+n.
Sn=∑n3Tn=∑n
We know that,
⇒Sn=∑n3=n(n+1)22⇒Sn=∑n2=Tn2
Hence, option C is correct.
If Sn=113+1+213+23+1+2+313+23+33+…..+1+2+……+n13+23+……+n3;n=1,2,3.. Then Sn is not greater than:
The common difference of the A.P b1,b2,……,bm is 2 more than the common difference of A.P a1,a2,……,an. If a40=-159,a100=-399and b100=a70, then b1 is equal to.