1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Powers with Negative Exponents
If, √1 + 11...
Question
If,
√
1
+
1
1
2
+
1
2
2
+
√
1
+
1
2
2
+
1
3
2
+
√
1
+
1
3
2
+
1
4
2
+
.
.
.
.
.
+
√
1
+
1
(
1999
)
2
+
1
(
2000
)
2
=
x
−
1
x
, then find the value of
x
.
Open in App
Solution
√
1
+
1
1
2
+
1
2
2
+
√
1
+
1
2
2
+
1
3
2
+
√
1
+
1
3
2
+
1
4
2
+
.
.
.
.
.
+
√
1
+
1
(
1999
)
2
+
1
(
2000
)
2
=
x
−
1
x
Considering each term,
√
1
+
1
1
2
+
1
2
2
=
√
1
+
1
+
1
4
=
√
9
4
=
3
2
=
1
+
1
2
√
1
+
1
2
2
+
1
3
2
=
√
1
+
1
4
+
1
9
=
√
49
36
=
7
6
=
1
+
1
6
√
1
+
1
3
2
+
1
4
2
=
√
1
+
1
9
+
1
16
=
√
169
144
=
13
12
=
1
+
1
12
So,
=
1
+
1
2
+
1
+
1
6
+
1
+
1
12
+
.
.
.
.
.
.
+
1
+
1
(
1999
)
(
2000
)
=
1999
+
[
1
2
+
1
6
+
1
12
+
.
.
.
.
.
.
+
1
(
1999
)
(
2000
)
]
=
1999
+
[
1
−
1
2
+
1
2
−
1
3
+
1
3
−
1
4
+
.
.
.
.
.
.
.
+
1
1999
−
1
2000
]
=
1999
+
1
−
1
2000
=
2000
−
1
2000
So,
x
=
2000
(Answer)
Suggest Corrections
1
Similar questions
Q.
If
x
=
1
1
2
+
1
3
2
+
1
5
2
+
.
.
.
.
,
y
=
1
1
2
+
3
2
2
+
1
3
2
+
3
4
2
+
.
.
and
z
=
1
1
2
−
1
2
2
+
1
3
2
−
1
4
2
+
.
.
.
.
,
then
Q.
If
1
1
2
+
1
2
2
+
1
3
2
+
.
.
.
.
u
p
t
o
∞
=
π
2
6
, then find
1
−
1
2
2
+
1
3
2
−
1
4
2
+
.
.
.
.
u
p
t
o
∞
Q.
Find the sum of
√
1
+
1
1
2
+
1
2
2
+
√
1
+
1
2
2
+
1
3
2
+
√
1
+
1
3
2
+
1
4
2
+
.
.
.
.
n
terms
Q.
If
1
1
2
+
1
2
2
+
1
3
2
+
1
4
2
+ ........ =
π
2
6
then
1
1
2
+
1
3
2
+
1
5
2
+ ....... =