The correct options are
B x+yx−y,x>0 C y−xy+x,x<0Given
√x2+y2=et,t=sin−1(y√x2+y2)
sint=y√x2+y2
∴cost=√1−sin2t=x√x2+y2,x>0
=−x√x2+y2,x<0
sint=y√x2+y2
etsint=y(∵et=√x2+y2)
(etsint+etcost)dtdx=dydx→1
et=√x2+y2
t=ln(√x2+y2)
Differentiate on both sides w.r.t x
dtdx=1√x2+y2.2x+2ydydx2√x2+y2=x+ydydx(x2+y2)
For x>0
1⇒(√x2+y2.y√x2+y2+√x2+y2x√x2+y2)dtdx=dtdx
(x+y)dtdx=dydx
(x+yx2+y2)(x+ydydx)=dydx
(x2+xy)+(xy+y2)dydx=(x2+y2)dydx
∴dydx=x2+xyx2−xy=x+yx−y,x>0
For x<0
(y−x)(x+ydydx)=(x2+y2)dydx
(yx−x2)(y2−yx)dydx=(x2+y2)dydx
∴dydx=yx−x2x2+xy=y−xy+x,x<0