If ∑2ni−lcos−1xi=0, then ∑2ni−lcos−1xi is
n
2n
n(n+1)/2
3n
Since, 0≤cos−1xi≤π,∴cos−1xi=0 for all i ∴xi=1 for all i ∴∑2ni−lcos−1xi=2n
If∑20i−lsin−1xi=10π, then ∑20i−lxi is equal to