If T = (5+2√6)n = M + f , n \in N , 0 ≤ f < 1 , Then M =
(5+2√6)n = M + f , m ∈ N , 0 ≤ f < 1 .
Let (5−2√6)n = g , then 0 < g < 1 .
M + f + g = (5+2√6)n+(5−2√6)n
= 2 { \( {}^nC_05^n + {}^nC_2 5^{n-2} (2\sqrt{6})^2 + ... }
= integer
⇒ f + g is integer ⇒
0 < f + g < 2 , f + g is integer ⇒ f + g = 1
∴ (M+f)g = (5+2\sqrt{6})^n (5-2\sqrt{6})^n = 1 \)
⇒ M = 1g−f=11−f−f