If tan-111+2+tan-111+23+tan-111+34+...+tan-111+nn+1=tan-1θ. Then θ is equal
nn+1
n+1n+2
n+2n+1
nn+2
Explanation for the correct option:
Resolve each term of the given sequence
Here,tan−111+1·2=tan−12−11+2·1=tan−12−tan−11∵tan−1x+tan−1y=tan−1x+y1−xyortan−1x-tan−1y=tan−1x-y1+xy
Similarly,tan−111+2·3=tan−13−tan−12andtan−111+n(n+1)=tan−1(n+1)−tan−1n
Therefore, tan−12−tan−11+tan−13−tan−12+....+tan−1(n−1)−tan−1n=tan−1θ
or, tan−1(n+1)− tan−11= tan−1θor, tan−1n+1−11+(n+1)(1)= tan−1θor, n1+n+1=θor, θ=n2+n
Hence option (D) is the answer