If tan−1x+tan−1y=π4, then
x+y+xy=1
x+y−xy=1
x+y+xy+1=0
x+y−xy+1=0
Explanation for the correct option:
Given the equation: tan−1x+tan−1y=π4........(i),
we know tanπ4=1
Apply the formula tan−1A+tan−1B=tan−1A+B1-AB in the equation (i),
tan−1x+tan−1y=π4tan−1x+y1−xy=π4x+y1−xy=tanπ4x+y1−xy=1x+y=1−xyx+y+xy=1
Hence, the correct option is (A).