If tan3AtanA=a, then sin3AsinA is equal to
2aa+1
2aa-1
aa+1
aa-1
Explanation for the correct option:
Step 1: Given that,
tan3AtanA=a
Then, sin3AsinA
Multiply and divide by 2cosA,
∴2cosAsin3A2cosAsinA
=2cosAsin3Asin2A∵sin2θ=2sinθcosθ
=2cosAsin3Asin3A-A=2cosAsin3Asin3AcosA-cos3AsinA
Step 2: Divide the numerator and denominator by cosAcos3A,
∴2cosAsin3AcosAcos3Asin3AcosA-cos3AsinAcosAcos3A=2tan3Atan3A-tanA
Step 3: Divide the numerator and denominator by tanA,
=2tan3AtanAtan3A-tanAtanA=2atan3AtanA-1=2aa-1
Hence, the correct option is (B).