If tanA-tanB=x and cotB-cotA=y, then cotA-B=?
1x+y
1xy
1x-1y
1x+1y
Explanation for the correct option
Given tanA-tanB=x and cotB-cotA=y
∴cotB-cotA=y⇒1tanB-1tanA=y∵cotθ=1tanθ⇒tanA-tanBtanBtanA=y⇒xtanBtanA=y∵tanA-tanB=x⇒tanBtanA=xy∴cotA-B=1tanA-B∵cotθ=1tanθ=1tanA-tanB1+tanAtanB∵tanα-β=tanα-tanβ1+tanαtanβ=1+tanAtanBtanA-tanB=1+xyx=x+yxy⇒cotA-B=1x+1y
Hence the correct option is option(D) i.e. 1x+1y
State true or false. If x ≠ y, (x,y) ≠ (y,x) and if (x,y) = (y,x) then x = y.
If x+y=5 and xy=6 If x>y then x−y is equal to
If A={(x,y):y=e-x}andB={(x,y):y=-x}. Then..