If tan A + tan B + tan C = tan A .tan B . tan C then
A + B + C must be an integral multiple of π
It is given that tan A + tan B + tan C = tan A .tan B . tan C
We have seen when A + B + C = π
We get the relation tan A + tan B + tan C = tan A .tan B . tan C
A + B = π - C
tan (A + B) = tan (π - C)
tanA+tanB1−tanAtanB= - tan C
tan A + tan B = - tan C + tan A . tan B . tan C
tanA+tanB+tanC=tanA.tanB.tanC
A + B + C = π or A, B, C must be angles of triangle.
Is that the only condition when this identity is true?
We observe that when A + B + C = nπ where n ∈ I
So, A + B + C = nπ
A + B = nπ - C
tan (A + B) = tan (nπ - C)
tanA+tanB1−tanAtanB= - tan C
{for any integral values of n}
tan A + tan B + tan C = tan A . tan B . tan C
So, option A is NOT correct option C is the correct option.
Option A is one special case of option C.