If tanα=kcotβ, then cosα-βcosα+β is equal to
1+k1-k
1-k1+k
k+1k-1
k-1k+1
Explanation for the correct option:
Step 1: Given that,
tanα=kcotβtanαcotβ=ksinαcosαsinβcosβ=kk=sinαsinβcosαcosβ...1
Step 2: Apply the formula
=cosα-βcosα+β∵cosa+b=cosacosb-sinasinband∵cosa-b=cosacosb+sinasinb
=cosαcosβ+sinαsinβcosαcosβ-sinαsinβ
Step 3: On dividing numerator & denominator by cosαcosβ
∴cosα-βcosα+β=cosαcosβ+sinαsinβcosαcosβcosαcosβ-sinαsinβcosαcosβ=1+sinαsinβcosαcosβ1-sinαsinβcosαcosβ
Step 4: From the equation 1
∴cosα-βcosα+β=1+k1-k
Hence, the correct option is (A).
If sinθ+α=a and sinθ+β=b, then cos2α-β-4abcosα-β is equal to