If tanθ=sin(α)-cos(α)sin(α)+cos(α), then sin(α)+cos(α) and sin(α)-cos(α) must be equal to
2cos(θ),2sin(θ)
2sin(θ),2cos(θ)
2sin(θ),2sin(θ)
2cos(θ),2cos(θ)
Explanation for the correct option:
Step 1. Simplify the equation
tanθ=sin(α)-cos(α)sin(α)+cos(α)
dividing cos(α) to both numerator and denominator
tanθ=sin(α)cos(α)-cos(α)cos(α)sin(α)cos(α)+cos(α)cos(α)⇒tanθ=tan(α)-1tan(α)+1[∵tanx=sinxcosx]⇒tanθ=tan(α)-tanπ41+tan(α)×tanπ4[∵tanπ4=1]⇒tanθ=tanα-π4[∵tan(x-y)=tanx-y1+xy]
Comparing both sides
θ=α-π4⇒α=θ+π4
Step 2. Find the value of sin(α)-cos(α)
sin(α)-cos(α)=sinθ+π4-cosθ+π4⇒sin(α)-cos(α)=cos(θ)sinπ4+sin(θ)cosπ4-cos(θ)cosπ4-sin(θ)sinπ4[∵sin(x+y)=sin(x)cos(y)+cos(y)sin(x),cos(x+y)=cos(x)cos(y)-sin(x)sin(y)]⇒sin(α)-cos(α)=cos(θ)12+sin(θ)12-cos(θ)12-sin(θ)12⇒sin(α)-cos(α)=12cos(θ)+sin(θ)-cos(θ)+sin(θ)⇒sin(α)-cos(α)=122sin(θ)⇒sin(α)-cos(α)=2sin(θ)
Step 3. Find the value of sin(α)+cos(α)
sin(α)+cos(α)=sinθ+π4+cosθ+π4⇒sin(α)+cos(α)=cos(θ)sinπ4+sin(θ)cosπ4+cos(θ)cosπ4-sin(θ)sinπ4[∵sin(x+y)=sin(x)cos(y)+cos(y)sin(x),cos(x+y)=cos(x)cos(y)-sin(x)sin(y)]⇒sin(α)+cos(α)=cos(θ)12+sin(θ)12+cos(θ)12-sin(θ)12⇒sin(α)+cos(α)=12cos(θ)+sin(θ)+cos(θ)-sin(θ)⇒sin(α)+cos(α)=122cos(θ)⇒sin(α)+cos(α)=2cos(θ)Hence, option A is correct.
Let f be a twice differentiable function such that g'x=-fx and f'x=gx, hx=fx2+gx2. If h5=11, then h10 is equal to
If fx=x2-1 and gx=x+12, then gofx is equal to