If ∫eaxcos(bx)dx=eaxK(acos(bx)+bsin(bx))+C, then the K here would be equal to -
A
√a2+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(a2+b2)13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a2+b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(a2−b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ca2+b2 We’ll use integration by parts method to calculate ∫eaxcos(bx)dx being cos(bx) as the first function and eax being the second function. Let I=∫eaxcos(bx)dx Or I=cos(bx).eaxa−∫eaxa(−sin(bx)).bdx Or I=cos(bx).eaxa+ba∫eax(sin(bx)).dx Let I1=∫eax(sin(bx)).dx I=cos(bx).eaxa+baI1…(1) Applying integration by parts to integrate I1, sin(bx) being the first function, and eax being the second function. I1=sin(bx).eaxa−∫eaxa(cos(bx)).bdx Or I1=sin(bx).eaxa−ba∫eax(cos(bx)).dx Let's substitute I1=sin(bx).eaxa−ba∫eax(cos(bx)).dx in 1st equation. I=cos(bx).eaxa+ba(sin(bx))eaxa−ba∫eax(cos(bx)).dx) Or I=cos(bx).eaxa+ba2sin(bx)eax.−b2a2∫eax(cos(bx)).dx We can see that in above equation we have ∫eaxcos(bx)dx which is nothing but "I" itself. I=cos(bx).aaxa+ba2sin(bx).eax−b2a2 (1) Or I(1+b2a2)=cos(bx).eaxa+ba2sin(bx).eax Or I=a2a2+b2eax(acos(bx)+bsin(bx))a2 I=eaxa2+b2(acos(bx)+bsin(bx)+C On comparing we can see that ‘K’ is equal to a2+b2.