The correct option is D a=1,bϵ(−1,1)
Equation of diameters are 3x - 4y - 1 = 0
8x - 3y + 5 = 0,
∴ solving, we get centre = (-1, -1)
But centre of circle x2+y2−2(a2−3a+1)x−2(a2−5a+3)y+b2+1=0 is (a2−3a+1,a2−5a+3)=(−1,−1)
⇒a2−3a+2=0anda2−5a+4=0
⇒a=1
Radius = √1+1−(b2+1)=√1−b2 is defined when 1−b2 > 0 ⇒ bϵ(−1,1)