The correct option is A 1a2+1b2=1c
Equation of circle:
x2+y2+2ax+c=0
∴g=a,f=0,c=c
r1=√a2+02−c
⇒r1=√a2−c
Centre,C1=(−a,0) and r1=√a2−c
Equation of circle:
x2+y2+2by+c=0
∴g=0,f=b,c=c
Centre,C2(0,−b) and r2=√b2−c
C1C2=√(−a−0)2+(0+b)2
⇒C1C2=√a2+b2
Since both circle touches each other
⇒√a2−c+√b2−c=√a2+b2
⇒(√a2−c+√b2−c)2=(√a2+b2)2
⇒a2−c+b2−c+2√a2−c√b2−c=a2+b2
⇒−2c+2√a2−c√b2−c=0
⇒√a2−c√b2−c=c
⇒(a2−c)(b2−c)=c2 {squaring of both side}
⇒a2b3−a2c−b2c+c2=c2
⇒a2b2−a2c−b2c=0
⇒c(a2+b2)=a2b2
⇒a2+b2a2b2=1c
∵1a2+1b2=1c
Hence, option (a) is correct.